
SQL and PL/SQL Tutorial

S.RAFEEQ AHMED, M.Sc. & M.RIYAZ MOHAMMED M.C.A.,M.Phil.,

Table of Contents
Introduction to SQL	5
A Brief History of SQL	5
Relational DataBase Management System (RDBMS).	5
An Overview of SQL	6
Introduction to the Query: The SELECT Statement	6
General Rules of Syntax	7
Terminating an SQL Statement	9
Changing the Order of the Columns	9
Selecting Individual Columns	10
Selecting Different Tables	10
Queries with Distinction	10
CREATE TABLE	11
ALTER TABLE	12
Creating a View	15
Introduction to PL/SQL	16
Introduction	16
Features of PL/SQL	16
The PL/SQL Identifiers	17
The PL/SQL Delimiters	17
The PL/SQL Comments	17
Data Types in PL/SQL	18
Character String Data Types	18
Numeric Data Types	18
Binary Data Types	18
The DATE Data Type	18
BOOLEAN	19
ROWID	19
Variable Assignment	19
Constant Assignment	19
Cursors	19
Implicit Cursors	20
The %TYPE Attribute	21
The %ROWTYPE Attribute	21
The %ROWCOUNT Attribute	22
Explicit Cursors	22
The PROCEDURE Section	22
Output Statements	23
Displaying Output to the User	23
Control Statements	23
Cursor Control Commands	23
DECLARE	23
OPEN	23
FETCH	24
CLOSE	24
Transactional Control commands in PL/SQL	25
COMMIT	25
ROLLBACK	25
SAVEPOINT	25
Statements Control Commands	25
Conditional Statements	25
IF...THEN	25
LOOPS	26
The EXCEPTION Section	27
Raising Exceptions	27
Handling Exceptions	28
Procedures	28
Parameter types and passing technics	28
IN only parameter:	29
OUT only parameter	29
IN OUT Parameter	29
Methods for Passing Parameters	30
POSITIONAL NOTATION	30
NAMED NOTATION	30
MIXED NOTATION	30
Creating a Procedure	30
Deleting a Standalone Procedure	31
Functions	31
Library Functions	31
Stored Functions (User Defined)	33
Creating a Function	33
Calling a Function	34
PL/SQL Recursive Functions	35
Factorial 6 is 720	35
Triggers	36
Creating Triggers	36
Triggering a Trigger	37
Packages	38
Reasons to Use Packages	38
Package Specification	39
Creating Package Specifications	39
Package Body	40
Package Instantiation and Initialization	42
SERIALLY_REUSABLE Packages	43

[bookmark: _Toc250091655]Introduction to SQL
[bookmark: _Toc250091656]A Brief History of SQL
The history of SQL begins in an IBM laboratory in San Jose, California, where SQL was developed in the late 1970s. The initials stand for Structured Query Language, and the language itself is often referred to as "sequel." It was originally developed for IBM's DB2 product (a relational database management system, or RDBMS, that can still be bought today for various platforms and environments). In fact, SQL makes an RDBMS possible. SQL is a nonprocedural language, in contrast to the procedural or third generation languages (3GLs) such as COBOL and C that had been created up to that time.

The S, for Structured, and the L, for Language, are straightforward enough, but the Q is a little misleading. Q,
of course, stands for "Query," which--if taken literally--would restrict you to asking the database questions. But SQL does much more than ask questions. With SQL you can also create tables, add data, delete data, splice data together, trigger actions based on changes to the database, and store your queries within your program or database.

The characteristic that differentiates a DBMS from an RDBMS is that the RDBMS provides a set-oriented database language. For most RDBMSs, this set-oriented database language is SQL. Set oriented means that SQL processes sets of data in groups.
[bookmark: _Toc250091657]Relational DataBase Management System (RDBMS).

This method has several advantages and many disadvantages. In its favor is the fact that the physical structure of data on a disk becomes unimportant. The programmer simply stores pointers to the next location, so data can be accessed in this manner. Also, data can be added and deleted easily. However, different groups of information could not be easily joined to form new information. The format of the data on the disk could not be arbitrarily changed after the database was created. Doing so would require the creation of a new database structure.

The idea for an RDBMS uses the mathematical concepts of relational algebra to break down data into sets and related common subsets. Because information can naturally be grouped into distinct sets, We organize the database system around this concept. Under the relational model, data is separated into sets that resemble a table structure. This table structure consists of individual data elements called columns or fields. A single set of a group of fields is known as a record or row. For instance, to create a relational database consisting of employee data, you might start with a table called EMPLOYEE that contains the following pieces of information: Name, Age, and Occupation. These three pieces of data make up the fields in the EMPLOYEE table, shown in Table 1.1.

Table 1.1. The EMPLOYEE table.

	Name
	Age
	Occupation

	Williams
	25
	Electrical engineer

	Davidson
	34
	Museum curator

	Janis
	42
	Chef

	Jackson
	19
	Student

	DeMarco
	32
	Game programmer

	Boudreaux
	25
	Model

The six rows are the records in the EMPLOYEE table. To retrieve a specific record from this table, for example, Dave Davidson, a user would instruct the database management system to retrieve the records where the NAME field was equal to Dave Davidson. If the DBMS had been instructed to retrieve all the fields in the record, the employee's name, age, and occupation would be returned to the user. SQL is the language that tells the database to retrieve this data. A sample SQL statement that makes this query is

SELECT * FROM EMPLOYEE

Remember that the exact syntax is not important at this point. We cover this topic in much greater detail beginning tomorrow. Because the various data items can be grouped according to obvious relationships (such
as the relationship of Employee Name to Employee Age), the relational database model gives the database designer a great deal of flexibility to describe the relationships between the data elements. Through the mathematical concepts of join and union, relational databases can quickly retrieve pieces of data from different sets (tables) and return them to the user or program as one "joined" collection of data. The join feature enables the designer to store sets of information in separate tables to reduce repetition.
[bookmark: _Toc250091658]An Overview of SQL
SQL is the de facto standard language used to manipulate and retrieve data from these relational databases. SQL enables a programmer or database administrator to do the following:

· Modify a database's structure
· Change system security settings
· Add user permissions on databases or tables
· Query a database for information
· Update the contents of a database

The first step to learning SQL is to understand the different types of commands.

· Data Manipulation Language (DML) statements manage data within schema objects.
· Data Definition Language (DDL) statements create or alter structures (not data) in the database.
· Data Control Language (DCL) statements manage security in the database.
· Transaction Control Language (TCL) statements manage transactions in the database.

You can see that SQL can be broken down into different areas.
[bookmark: _Toc250091659]Introduction to the Query: The SELECT Statement
"Introduction to SQL," you need to communicate with it. The ultimate communication would be to turn to your computer and say, in a clear, distinct voice, "Show me all the left-handed, brown-eyed bean counters who have worked for this company for at least 10 years." A few of you may already be doing so (talking to your computer, not listing bean counters). Everyone else needs a more conventional way of retrieving information from the database.
Objectives

· Write an SQL query
· Select and list all rows and columns from a table
· Select and list selected columns from a table
· Select and list columns from multiple tables

An SQL query is not necessarily a question to the database. It can be a command to do one of the following:
· Build or delete a table
· Insert, modify, or delete rows or fields
· Search several tables for specific information and return the results in a specific order
· Modify security information

A query can also be a simple question to the database. To use this powerful tool, you need to learn how to write an SQL query. Your SQL statements can be broken into sections called clauses. Not all statements contain all the clauses. It depends on what you’re trying to do.
Basic architecture of the SQL SELECT clauses.
SELECT Contains the columns and operators to display the data
FROM Contains one or more tables from which the data originates
WHERE Determines what data will be returned or restricted
GROUP BY Groups the data according to certain values
ORDER BY Orders the output of the data based on specified columns
[bookmark: _Toc250091660]General Rules of Syntax
As you will find, syntax in SQL is quite flexible, although there are rules to follow as in any programming language. A simple query illustrates the basic syntax of an SQL select statement. Pay close attention to the case, spacing, and logical separation of the components of each query by SQL keywords.
SELECT
 NAME, STARTTERM, ENDTERM
FROM
 PRESIDENTS
WHERE
 NAME = 'LINCOLN';

In this example everything is capitalized, but it doesn't have to be. The preceding query would work just as well if it were written like this:
select
 name, startterm, endterm
from
 presidents
where
 name = 'LINCOLN';

Notice that LINCOLN appears in capital letters in both examples. Although actual SQL statements are not case sensitive, references to data in a database are. For instance, many companies store their data in uppercase. In the preceding example, assume that the column name stores its contents in uppercase. Therefore, a query searching for 'Lincoln' in the name column would not find any data to return. Check your implementation and/or company policies for any case requirements.

NOTE: Commands in SQL are not case sensitive.

Take another look at the sample query. Is there something magical in the spacing? Again the answer is no. The following code would work as well:

select name, startterm, endterm from presidents where name ='LINCOLN';

However, some regard for spacing and capitalization makes your statements much easier to read. It also makes your statements much easier to maintain when they become a part of your project. Another important feature of ; (semicolon)semicolon (;)the sample query is the semicolon at the end of the expression. This punctuation mark tells the command-line SQL program that your query is complete.If the magic isn't in the capitalization or the format, then just which elements are important? The answer is keywords, or the words in SQL that are reserved as a part of syntax. (Depending on the SQL statement, a keyword can be either a mandatory element of the statement or optional.) The keywords in the current example are

SELECT
 FROM
 WHERE

Check the table of contents to see some of the SQL keywords.
The Building Blocks of Data Retrieval: SELECT and FROM
As your experience with SQL grows, you will notice that you are typing the words SELECT and FROM more than any other words in the SQL vocabulary. They aren't as glamorous as CREATE or as ruthless as DROP, but they are indispensable to any conversation you hope to have with the computer concerning data retrieval. And isn't data retrieval the reason that you entered mountains of information into your very expensive database in the first place?

This discussion starts with SELECT because most of your statements will also start with

SELECT:
SYNTAX:
SELECT <COLUMN NAMES>

The commands, see also statementsbasic SELECT statement couldn't be simpler. However, SELECT does not work alone. If you typed just SELECT into your system, you might get the following response:

INPUT:
SQL> SELECT;

OUTPUT:
SELECT * ERROR at line 1:
ORA-00936: missing expression

The asterisk under the offending line indicates where Oracle7 thinks the offense occurred. The error message tells you that something is missing. That something is the FROM clause:

SYNTAX:
FROM <TABLE>
Together, the statements SELECT and FROM begin to unlock the power behind your database.

NOTE: keywordsclausesAt this point you may be wondering what the difference is between a keyword, a statement, and a clause. SQL keywords refer to individual SQL elements, such as SELECT and FROM. A clause is a part of an SQL statement; for example, SELECT column1, column2, ... is a clause. SQL clauses combine to form a complete SQL statement. For example, you can combine a SELECT clause and a FROM clause to write an SQL statement.

NOTE: Each implementation of SQL has a unique way of indicating errors. Microsoft Query, for example, says it can't show the query, leaving you to find the problem. Personal Oracle7, the engine used in the preceding example, gives you an error number (so you can look up the detailed explanation in your manuals)
and a short explanation of the problem.

Examples
Before going any further, look at the sample database that is the basis for the following examples. This database illustrates the basic functions of SELECT and FROM. In the real world you would use the techniques described as "Manipulating Data," to build this database, but for the purpose of describing how to use SELECT and FROM, assume it already exists. This example uses the CHECKS table to retrieve information about checks that an individual has written.

The CHECKS table:

CHECK# 	PAYEE 		 AMOUNT REMARKS
--------- 	-------------------- ------ ---------------------
1 		Ma Bell 		 150 Have sons next time
2 		Reading R.R. 	 245.34 Train to Chicago
3 		Ma Bell 		 200.32 Cellular Phone
4 		Local Utilities 		 98 Gas
5 		Joes Stale $ Dent 	150 Groceries
6 		Cash 				 25 Wild Night Out
7 		Joans Gas 		 25.1 Gas
Your First Query

INPUT:
SQL> select * from checks;

OUTPUT:
Queries 	CHECK# 	PAYEE 	AMOUNT	 REMARKS
------ 		-------------------- 	------- 		---------------------
1 		Ma Bell 	 150 	Have sons next time
2 		Reading R.R. 	 245.34 	Train to Chicago
3 		Ma Bell 	 200.32 	Cellular Phone
4 		Local Utilities 	 98 	Gas
5 		Joes Stale$ Dent 150 	Groceries
6 		Cash 			25 	Wild Night Out
7 		Joans Gas 	 25.1 	Gas
7 rows selected.

ANALYSIS:
This output looks just like the code in the example. Notice that columns 1 and 3 in the output statement are right-justified and that columns 2 and 4 are left-justified. This format follows the alignment convention in which numeric data types are right justified and character data types are left-justified. Data types are discussed as "Creating and Maintaining Tables." The asterisk (*) in select * tells the database to return all the columns associated with the given table described in the FROM clause. The database determines the order in which to return the columns.
[bookmark: _Toc250091661]Terminating an SQL Statement
In some implementations of SQL, the semicolon at the end of the statement tells the interpreter that you are finished writing the query. For example, Oracle's SQL*PLUS won't execute the query until it finds a semicolon (or a slash). On the other hand, some implementations of SQL do not use the semicolon as a terminator. For example, Microsoft Query and Borland's ISQL don't require a terminator, because your query is typed in an edit box and executed when you push a button.
[bookmark: _Toc250091662]Changing the Order of the Columns
The preceding example of an SQL statement used the * to select all columns from a table, the order of their appearance in the output being determined by the database. To specify the order of the columns, you could type something like:

INPUT:
SQL> SELECT payee, remarks, amount, check# from checks;

Notice that each column name is listed in the SELECT clause. The order in which the columns are listed is the order in which they will appear in the output. Notice both the commas that separate the column names and the space between the final column name and the subsequent clause (in this case FROM). The output would look like this:

OUTPUT:
PAYEE 	REMARKS 		AMOUNT 	CHECK#
-------------------- 	------------------ 		--------- 		---------
Ma Bell 	Have sons next time 	150 		1
Reading R.R. 	Train to Chicago 245.34 		2
Ma Bell 	Cellular Phone 200.32 		3
Local 		Utilities Gas 	 98 		4
Joes Stale 	$ Dent Groceries 	150 		5
Cash 		Wild Night Out 	 	 25 		6
Joans 		Gas Gas 	 25.1 		7
7 rows selected.

Another way to write the same statement follows.
INPUT:
SELECT payee, remarks, amount, check#
FROM checks;

Notice that the FROM clause has been carried over to the second line. This convention is a matter of personal taste when writing SQL code. The output would look like this:

OUTPUT:
PAYEE REMARKS AMOUNT CHECK#
-------------------- -------------------- --------- --------
Ma Bell Have sons next time 150 1
Reading R.R. Train to Chicago 245.34 2
Ma Bell Cellular Phone 200.32 3
Local Utilities Gas 98 4
Joes Stale $ Dent Groceries 150 5
Cash Wild Night Out 25 6
Joans Gas Gas 25.1 7
7 rows selected.

ANALYSIS:
The output is identical because only the format of the statement changed. Now that you have established control over the order of the columns, you will be able to specify which columns you want to see.
[bookmark: _Toc250091663]Selecting Individual Columns
Suppose you do not want to see every column in the database. You used SELECT * to find out what information was available, and now you want to concentrate on the check number and the amount. You type

INPUT:
SQL> SELECT CHECK#, amount from checks;
which returns

OUTPUT:

CHECK# AMOUNT
--------- ---------
1 150
2 245.34
3 200.32
4 98
5 150
6 25
7 25.1
7 rows selected.

ANALYSIS:
Now you have the columns you want to see. Notice the use of upper- and lowercase in the query. It did not affect the result. What if you need information from a different table?
[bookmark: _Toc250091664]Selecting Different Tables
Suppose you had a table called DEPOSITS with this structure:

DEPOSIT# WHOPAID AMOUNT REMARKS
-------- ---------------------- ------ -------------------
1 Rich Uncle 200 Take off Xmas list
2 Employer 1000 15 June Payday
3 Credit Union 500 Loan
You would simply change the FROM clause to the desired table and type the following statement:

INPUT:

SQL> select * from deposits
The result is

OUTPUT:

DEPOSIT# WHOPAID AMOUNT REMARKS
-------- ---------------------- ------ -------------------
1 Rich Uncle 200 Take off Xmas list
2 Employer 1000 15 June Payday
3 Credit Union 500 Loan

ANALYSIS: With a single change you have a new data source.
[bookmark: _Toc250091665]Queries with Distinction
If you look at the original table, CHECKS, you see that some of the data repeats. For example, if you looked at the AMOUNT column using

INPUT:
SQL> select amount from checks;

OUTPUT:
AMOUNT

150
245.34
200.32
98
150
25
25.1

Notice that the amount 150 is repeated. What if you wanted to see how may different amounts were in this column? Try this:

INPUT:
SQL> select DISTINCT amount from checks;
The result would be

OUTPUT:
AMOUNT

25
25.1
98
150
200.32
245.34
6 rows selected.

ANALYSIS:
Notice that only six rows are selected. Because you specified DISTINCT, only one instance of the duplicated data is shown, that means that one less row is returned. ALL is a keyword that is implied in the basic SELECT statement. You almost never see ALL because SELECT <Table> and SELECT ALL <Table> have the same result. Try this example--for the first (and only!) time in your SQL career:

INPUT:
SQL> SELECT ALL AMOUNT
2 FROM CHECKS;

OUTPUT:

AMOUNT

150
245.34
200.32
98
150
25
25.1
7 rows selected.

It is the same as a SELECT <Column>.

[bookmark: _Toc250091666]CREATE TABLE
Creating a Table from a Table
Oracle lets you create a new table on-the-fly, based on a select statement on an existing table:

CREATE TABLE RAIN_TABLE AS
 SELECT CITY, PRECIPITATION FROM TROUBLE

Table created.

NOTE

The create table … as select … command will not work if one of the selected columns uses the LONG datatype.

When the new table is described, it reveals that it has “inherited” its column definitions from the TROUBLE table. A table created in this fashion can include all columns, using an asterisk if you like, or a subset of columns from another table. It also can include “invented” columns, which are the product of functions or the combination of other columns, just as in a view. The character column definitions will adjust to the size necessary to contain the data in the invented columns. NUMBER columns that had specified precision in the source table but undergo computation in inventing a new column, will simply be NUMBER columns, with no specified precision, in the new table.

Each table is created via the create table command, which specifies the names of the columns in the table, as well as the characteristics of those columns. Here is the create table command for the NEWSPAPER table,

CREATE TABLE NEWSPAPER
(
FEATURE VARCHAR2(15) NOT NULL,
SECTION CHAR(1),
PAGE NUMBER
);

[bookmark: _Toc250091667]ALTER TABLE

ALTER TABLE <table_name>
ADD <column_name data_type> constraint;
In this statement:
· First, you specify the name of the table, which you want to add the new column, after the ALTER TABLE clause.
· Second, you specify the column name, data type, and its constraint.
Note that you cannot add a column that already exists in the table; trying to do so will cause an error. In addition, the ALTER TABLE ADD column statement adds the new column at the end of the table. Oracle provides no direct way to allow you to specify the position of the new column like other database systems such as MySQL.

In case you want to add more than one column, you use the following syntax:
ALTER TABLE table_name
ADD (
 column_name_1 data_type constraint,
 column_name_2 data_type constraint,
 ...
);

Code language: SQL (Structured Query Language) In this syntax, you separate two columns by a comma.
	Oracle ALTER TABLE ADD column

The following statement adds a new column named birth_date to the members table:

	ALTER TABLE MEMBERS ADD BIRTH_DATE DATE NOT NULL;

Code language: SQL (Structured Query Language). In this example, the birth_date column is a DATE column and it does not accept null.

Suppose, you want to record the time at which a row is created and updated. To do so, you need to add two columns created at and updated at as follows:

	ALTER TABLE MEMBERS ADD(
	 CREATED_ATt TIMESTAMP WITH TIME ZONE NOT NULL,
	 UPDATED_DT TIMESTAMP WITH TIME ZONE NOT NULL
);
Code language: SQL (Structured Query Language).

The data types of the CREATED_AT and UPDATED_AT columns are TIMESTAMP WITH TIME ZONE. These columns also do not accept null.

To change the definition of a column in a table, you use the ALTER TABLE MODIFY column syntax as follows:

ALTER TABLE <table_name> MODIFY <column_name> action;

Code language: SQL (Structured Query Language)

The statement is straightforward. To modify a column of a table, you need to specify the column name, table name, and action that you want to perform.

Oracle allows you to perform many actions but the following are the main ones:
· Modify the column’s visibility
· Allow or not allow null values
· Shorten or widen the size of the column
· Change the default value of a column
· Modify expression of the virtual columns
To modify multiple columns, you use the following syntax:

ALTER TABLE table_name
	MODIFY (
	 column_name_1 action,
	 column_name_2 action,
	 ...
)

To make a NOT NULL column nullable, use the alter table command with the NULL clause, as follows:

ALTER TABLE TROUBLE MODIFY(CONDITION NULL);

The Rules for Adding or Modifying a Column
These are the rules for modifying a column:
· You can increase a character column’s width at any time.
· You can increase the number of digits in a NUMBER column at any time.
· You can increase or decrease the number of decimal places in a NUMBER column at any time.

In addition, if a column is NULL for every row of the table, you can make any of these changes:
· You can change the column’s datatype.
· You can decrease a character column’s width.
· You can decrease the number of digits in a NUMBER column.
· You can only change the datatype of a column if the column is empty (NULL) in all rows of the table.

There is one notable exception to the restrictions on datatype changes. Oracle supports the changing of LONG datatype columns to the LOB datatype, even if there is data already in the LONG column. The following listing illustrates this functionality:

CREATE TABLE LONGTEST
(
COL1 NUMBER,
LONGCOL LONG
);

Table created.

INSERT INTO LONGTEST VALUES(1,'This is a LONG value');
1 row created.

ALER TABLE LONGTEST MODIFY(LONGCOL CLOB);
Table altered.

desc LONGTEST

Name Null? Type
--- -------- --------
COL1 NUMBER
LONGCOL CLOB

Creating Read-Only Tables
As of Oracle 11g, you can alter tables to be in read-only or read-write state. This allows you to prevent insert, update, and delete operations at the table level (in prior releases this capability exists at the tablespace level, or requires the use of views). To make a table read-only, use the alter table command:

ALTER TABLE LONGTEST READ ONLY;

Attempts to change the records within LONGTEST will result in an error. To return the table to its prior state, use the read write clause of the alter table command, as shown here:

ALTER TABLE LONGTEST READ WRITE;

To see the state of a table, query the Read_Only column of the USER_TABLES data dictionary view. While a table is in read-only mode, you can continue to perform DML operations against it.
Altering Actively Used Tables
When you issue the alter table command, Oracle attempts to acquire a DDL lock on the table. If anyone else is accessing the table at that time, your command will fail—you need to have exclusive access to the table while you are changing its structure. You may need to repeatedly try to execute your command in order to acquire the lock you need.

As of Oracle 11g, you can use the DDL lock timeout options to work around this problem. You can execute the alter session command to set a value for the ddl_lock_timeout parameter, specifying the number of seconds during which Oracle should continually retry your command. The retry attempts will continue until the command is successful or the timeout limit is reached, whichever comes first. To try your command for 60 seconds, issue the following command:

ALTER SESSTION ddl_lock_timeout=60;

DBAs can enable this at the database level via the alter system command, as shown next:
alter system set ddl_lock_timeout=60;
Dropping a Column
You can drop a column from a table. Dropping a column is more complicated than adding or modifying a column because of the additional work that Oracle has to do. Just removing the column from the list of columns in the table—so it doesn’t show up when you select * from the table—is easy. It’s recovering the space that was actually taken up by the column values that is more complex, and potentially very time-consuming for the database. For this reason, you can drop a column immediately or you can mark it as “unused,” to be dropped at a later time. If the column is dropped immediately, the action may impact performance. If the column is marked as unused, there will be no impact on performance. The column can actually be dropped at a later time when the database is less heavily used.

 To drop a column, use either the set unused clause or the drop clause of the alter table command. You cannot drop a pseudo-column, a column of a nested table, or a partition key column. In the following example, column Wind is dropped from the TROUBLE table:

ALTER TABLE TROUBLE DROP COLUMN WIND;

Alternatively, you can mark the Wind column as unused:

ALTER TABLE TROUBLE SET UNUSED COLUMN WND;
[bookmark: _Toc250091668]Creating a View
There is even more here than meets the eye. Not only does this look like a new table, but you can give it a name and treat it like one. This is called “creating a view.” A view provides a way of hiding the logic that created the joined table just displayed. It works this way:

CREATE VIEW INVASION AS
SELECT CITY, CONDITION, TEMPERATURE, LATTITUDE, NORTHSOUTH, LONGITURE,
 EASTWEST
 FROM
WEATHER,
View created.

Now you can act as if INVASION were a real table with its own rows and columns. You can even ask Oracle to describe it to you:

DESCRIBE INVASION

Name Null? Type
------------------------------- -------- ------------
CITY VARCHAR2(11)
CONDITION VARCHAR2(9)
TEMPERATURE NUMBER
LATITUDE NUMBER
NORTHSOUTH CHAR(1)
LONGITUDE NUMBER
EASTWEST CHAR(1)

You can query it, too (note that you will not have to specify which table the City columns were from, because that logic is hidden inside the view):’

SELECT CITY, CONDITION, TEMPERATURE, LATTITUDE, NORTHWIND,LONGITUDE, EASTWEST
FROM INVASION;

CITY CONDITION TEMPERATURE LATITUDE N LONGITUDE E
---- --------- ----------- -------- - ---------- -
ATHENS SUNNY 97 37. 58 N 23.43 E
CHICAGO RAIN 66 41.53 N 87.38 W
LIMA RAIN 45 12.03 S 77.03 W

There will be some Oracle functions you won’t be able to use on a view that you can use on a plain table, but they are few and mostly involve modifying rows and indexing tables, which will be discussed in later chapters. For the most part, a view behaves and can be manipulated just like any other table.

[bookmark: _Toc250091669]Introduction to PL/SQL
[bookmark: _Toc250091670]Introduction
The PL/SQL programming language was developed by Oracle Corporation in the late 1980s as procedural extension language for SQL and the Oracle relational database. PL/SQL is not a stand-alone language. Following are notable facts about PL/SQL:
[bookmark: _Toc250091671]Features of PL/SQL
· PL/SQL is a completely portable, high-performance transaction-processing language.
· PL/SQL provides a built-in interpreted and OS independent programming environment.
· PL/SQL can also directly be called from the command-line SQL*Plus interface.
· Direct call can also be made from external programming language calls to database.
· PL/SQL's general syntax is based on that of ADA and Pascal programming language.
· PL/SQL is tightly integrated with SQL.
· It offers extensive error checking.
· It offers numerous data types.
· It offers a variety of programming structures.
· It supports structured programming through functions and procedures.
· It supports object-oriented programming.

SQL* Plus is an interactive tool that allows you to type SQL and PL/SQL statements at the command prompt. There are other tools also available to type PL/SQL and execute, such as Oracle Developer in the later versions of Oracle, Toad etc. These commands are then sent to the database for processing. Once the statements are processed, the results are sent back and displayed on screen.

To run PL/SQL programs, you should have Oracle RBDMS Server installed in your machine which will take care of executing SQL commands.
Basic Structure Of PL/SQL Code
PL/SQL is a block-structured language, meaning that PL/SQL programs are divided and written in logical blocks of code. Each block consists of three sub-parts:
1. Declarations This section starts with the keyword DECLARE. It is an optional section and defines all variables, cursors, subprograms, and other elements to be used in the program.

2. Executable Commands This section is enclosed between the keywords BEGIN and END and it is a mandatory section. It consists of the executable PL/SQL statements of the program. It should have at least one executable line of code, which may be just a NULL command to indicate that nothing should be executed.

3. Exception Handling This section starts with the keyword EXCEPTION. This section is again optional and contains exception(s) that handle errors in the program.
Below is an example for a typical PL/SQL code block.
DECLARE
<declarations section>
BEGIN
<executable command(s)>
EXCEPTION
<exception handling>
END;
Below is the sample PL/SQL program for displaying “Hello World”:
DECLARE
message varchar2(20):= 'Hello, World!';
BEGIN
dbms_output.put_line(message);
END;
/
[bookmark: _Toc250091672]The PL/SQL Identifiers
PL/SQL identifiers are constants, variables, exceptions, procedures, cursors, and reserved words. The identifiers consist of a letter optionally followed by more letters, numerals, dollar signs, underscores, and number signs and should not exceed 30 characters.

By default, identifiers are not case-sensitive. So you can use integer or INTEGER to represent a numeric value. You cannot use a reserved keyword as an identifier.
[bookmark: _Toc250091673]The PL/SQL Delimiters
A delimiter is a symbol with a special meaning. Following is the list of delimiters in PL/SQL:
	
Delimiter

	
Description

	+, -, *, /
	Addition, subtraction/negation, multiplication, division

	%
	Attribute indicator

	'
	Character string delimiter

	.
	Component selector

	(,)
	Expression or list delimiter

	:
	Host variable indicator

	,
	Item separator

	"
	Quoted identifier delimiter

	=
	Relational operator

	@
	Remote access indicator

	;
	Statement terminator

	:=
	Assignment operator

	=>
	Association operator

	||
	Concatenation operator

	**
	Exponentiation operator

	<<, >>
	Label delimiter (begin and end)

	/*, */
	Multi-line comment delimiter (begin and end)

	--
	Single-line comment indicator

	..
	Range operator

	<, >, <=, >=
	Relational operators

	<>, '=, ~=, ^=
	Different versions of NOT EQUAL

[bookmark: _Toc250091674]The PL/SQL Comments
Program comments are explanatory statements that you can include in the PL/SQL code that you write and helps anyone reading its source code. All programming languages allow for some form of comments.
The PL/SQL supports single-line and multi-line comments. All characters available inside any comment are ignored by PL/SQL compiler. The PL/SQL single-line comments start with the delimiter --(double hyphen) and multi-line comments are enclosed by /* and */.
DECLARE
-- variable declaration
message varchar2(20):= 'Hello, World!';
BEGIN
/*
* PL/SQL executable statement(s)
*/
dbms_output.put_line(message);
END;
/
When the above code is executed at SQL prompt, it produces the following result:
Hello World

PL/SQL procedure successfully completed.
[bookmark: _Toc250091675]Data Types in PL/SQL
Most data types are obviously similar, but each implementation has unique storage and internal-processing requirements. When writing PL/SQL blocks, you will be declaring variables, which must be valid data types. The following subsections briefly describe the data types available in PL/SQL. In PL/SQL Oracle provides subtypes of data types. For example, the data type NUMBER has a subtype called INTEGER. You can use subtypes in your PL/SQL program to make the data types compatible with data types in other programs, such as a COBOL program, particularly if you are embedding PL/SQL code in another program. Subtypes are simply alternative names for Oracle data types and therefore must follow the rules of their associated data type.

NOTE: As in most implementations of SQL, case sensitivity is not a factor in the syntax of a statement. PL/SQL allows either uppercase or lowercase with its commands.
[bookmark: _Toc250091676]Character String Data Types
Character string data types in PL/SQL, as you might expect, are data types generally defined as having alpha numeric values. Examples of character strings are names, codes,descriptions, and serial numbers that include characters.

CHAR stores fixed-length character strings. The maximum length of CHAR is 32,767 bytes, although it is hard to imagine a set of fixed-length values in a table being so long.

SYNTAX:
CHAR (max_length)
Subtype: CHARACTER
VARCHAR2 stores variable-length character strings. You would normally use VARCHAR2 instead of CHAR to store variable-length data, such as an individual's name. The maximum length of VARCHAR2 is also 32,767 bytes.

SYNTAX:
VARCHAR2 (max_length)
Subtypes: VARCHAR, STRING

LONG also stores variable-length character strings, having a maximum length of 32,760 bytes. LONG is typically used to store lengthy text such as remarks, although VARCHAR2 may be used as well.
[bookmark: _Toc250091677]Numeric Data Types
NUMBER stores any type of number in an Oracle database.

SYNTAX:
NUMBER (max_length)

You may specify a NUMBER's data precision with the following syntax:

NUMBER (precision, scale)
Subtypes: DEC, DECIMAL, DOUBLE PRECISION, INTEGER, INT, NUMERIC, REAL, SMALLINT, FLOAT,PLS_INTEGER defines columns that may contained integers with a sign, such as negative numbers.
[bookmark: _Toc250091678]Binary Data Types
Binary data types store data that is in a binary format, such as graphics or photographs. These data types include RAW and LONGRAW.
[bookmark: _Toc250091679]The DATE Data Type
DATE is the valid Oracle data type in which to store dates. When you define a column as a DATE, you do not specify a length, as the length of a DATE field is implied.

The format of an Oracle date is, for example, 01-OCT-97.
[bookmark: _Toc250091680]BOOLEAN
BOOLEAN stores the following values: TRUE, FALSE, and NULL. Like DATE, BOOLEAN requires no parameters when defining it as a column's or variable's data type.
[bookmark: _Toc250091681]ROWID
ROWID is a pseudo column that exists in every table in an Oracle database. The ROWID is stored in binary format and identifies each row in a table. Indexes use ROWIDs as pointers to data.
[bookmark: _Toc250091682]Variable Assignment
Variables are values that are subject to change within a PL/SQL block. PL/SQL variables must be assigned a valid data type upon declaration and can be initialized if necessary. The following example defines a set of variables in the DECLARE portion of a block:

DECLARE
owner char(10);
tablename char(30);
bytes number(10);
today date;

ANALYSIS:
The DECLARE portion of a block cannot be executed by itself. The DECLARE section starts with the DECLARE statement. Then individual variables are defined on separate lines. Notice that each variable declaration ends with a semicolon. Variables may also be initialized in the DECLARE section. For example:

DECLARE
customer char(30);
fiscal_year number(2) := '97';

You can use the symbol := to initialize, or assign an initial value, to variables in the DECLARE section. You must initialize a variable that is defined as NOT NULL.

DECLARE
customer char(30);
fiscal_year number(2) NOT NULL := '97';

ANALYSIS:
The NOT NULL clause in the definition of fiscal_year resembles a column definition in a CREATE TABLE statement.

[bookmark: _Toc250091683]Constant Assignment
Constants are defined the same way that variables are, but constant values are static; they do not change. In the previous example, fiscal_year is probably a constant.

NOTE: You must end each variable declaration with a semicolon.
[bookmark: _Toc250091684]Cursors
A cursor is another type of variable in PL/SQL. Usually when you think of a variable, a single value comes to mind. A cursor is a variable that points to a row of data from the results of a query. In a multiple-row result set, you need a way to scroll through each record to analyze the data. A cursor is just that. When the PL/SQL block looks at the results of a query within the block, it uses a cursor to point to each returned row. Oracle creates a memory area, known as context area, for processing an SQL statement, which contains all information needed for processing the statement, for example, number of rows processed, etc.

A cursor is a pointer to this context area. PL/SQL controls the context area through a cursor. A cursor holds the rows (one or more) returned by a SQL statement. The set of rows the cursor holds is referred to as the active set.

You can name a cursor so that it could be referred to in a program to fetch and process the rows returned by the SQL statement, one at a time. There are two types of cursors:

· Implicit cursors
· Explicit cursors

[bookmark: _Toc250091685]Implicit Cursors
Implicit cursors are automatically created by Oracle whenever an SQL statement is executed, when there is no explicit cursor for the statement. Programmers cannot control the implicit cursors and the information in it.

Whenever a DML statement (INSERT, UPDATE and DELETE) is issued, an implicit cursor is associated with this statement. For INSERT operations, the cursor holds the data that needs to be inserted. For UPDATE and DELETE operations, the cursor identifies the rows that would be affected.

In PL/SQL, you can refer to the most recent implicit cursor as the SQL cursor, which always has the attributes like %FOUND, %ISOPEN, %NOTFOUND, and %ROWCOUNT. The SQL cursor has additional attributes, %BULK_ROWCOUNT and %BULK_EXCEPTIONS, designed for use with the FORALL statement. The following table provides the description of the most used attributes:

	Attribute
	Description

	%FOUND
	Returns TRUE if an INSERT, UPDATE, or DELETE statement affected one or more rows or a SELECT INTO statement returned one or more rows. Otherwise, it returns FALSE.

	%NOTFOUND
	The logical opposite of %FOUND. It returns TRUE if an INSERT, UPDATE, or DELETE statement affected no rows, or a SELECT INTO statement returned no rows. Otherwise, it returns FALSE

	%ISOPEN
	Always returns FALSE for implicit cursors, because Oracle closes the SQL cursor automatically after executing its associated SQL statement.

	%ROWCOUNT
	Returns the number of rows affected by an INSERT, UPDATE, or DELETE statement, or returned by a SELECT INTO statement

Any SQL cursor attribute will be accessed as sql%attribute_name as shown below in the example.
Example:
We will be using the CUSTOMERS table we had created and used in the previous chapters.

Select * from customers;
+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
+----+----------+-----+-----------+----------+

The following program would update the table and increase salary of each customer by 500 and use the SQL%ROWCOUNT attribute to determine the number of rows affected:

DECLARE
 total_rows number(2);
BEGIN
 UPDATE customers
 SET salary = salary + 500;
 IF sql%notfound THEN
 dbms_output.put_line('no customers selected');
 ELSIF sql%found THEN
 total_rows := sql%rowcount;
 dbms_output.put_line(total_rows || ' customers selected ');
 END IF;
END;
/
When the above code is executed at SQL prompt, it produces the following result:

6 customers selected
PL/SQL procedure successfully completed.

If you check the records in customers table, you will find that the rows have been updated:

Select * from customers;
+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+
1	Ramesh	32	Ahmedabad	2500.00
2	Khilan	25	Delhi	2000.00
3	kaushik	23	Kota	2500.00
4	Chaitali	25	Mumbai	7000.00
5	Hardik	27	Bhopal	9000.00
6	Komal	22	MP	5000.00
+----+----------+-----+-----------+----------+

[bookmark: _Toc250091686]The %TYPE Attribute
%TYPE is a variable attribute that returns the value of a given column of a table. Instead of hard-coding the data type in your PL/SQL block, you can use %TYPE to maintain data type consistency within your blocks of code.

INPUT:

DECLARE
 cursor employee_cursor is
 select * from employees;

A cursor is similar to a view. With the use of a loop in the PROCEDURE section, you can scroll a cursor. This technique is covered shortly.

INPUT:

DECLARE
 cursor employee_cursor is
 select emp_id, emp_name from employees;

 id_num employees.emp_id%TYPE;
 name employees.emp_name%TYPE;

ANALYSIS:
The variable id_num is declared to have the same data type as emp_id in the EMPLOYEES table. %TYPE declares the variable name to have the same data type as the column emp_name in the EMPLOYEES table.
[bookmark: _Toc250091687]The %ROWTYPE Attribute
Variables are not limited to single values. If you declare a variable that is associated with a defined cursor, you can use the %ROWTYPE attribute to declare the data type of that variable to be the same as each column in one entire row of data from the cursor. In Oracle's lexicon the %ROWTYPE attribute creates a record variable.

INPUT:

DECLARE
 cursor employee_cursor is
 select emp_id, emp_name from employees;
 employee_record employee_cursor%ROWTYPE;

ANALYSIS:
This example declares a variable called employee_record. The %ROWTYPE attribute defines this variable as having the same data type as an entire row of data in the employee_cursor. Variables declared using the %ROWTYPE attribute are also called aggregate variables.
[bookmark: _Toc250091688]The %ROWCOUNT Attribute
The PL/SQL %ROWCOUNT attribute maintains a count of rows that the SQL statements in the particular block have accessed in a cursor.

INPUT:

DECLARE
 cursor employee_cursor is
 select emp_id, emp_name from employees;
 records_processed := employee_cursor%ROWCOUNT;

ANALYSIS:
In this example the variable records_processed represents the current number of rows that the PL/SQL block has accessed in the employee_cursor.

WARNING: Beware of naming conflicts with table names when declaring variables. For instance, if you declare a variable that has the same name as a table that you are trying to access with the PL/SQL code, the local variable will take precedence over the table name.
[bookmark: _Toc250091689]Explicit Cursors
Explicit cursors are programmer defined cursors for gaining more control over the context area. An explicit cursor should be defined in the declaration section of the PL/SQL Block. It is created on a SELECT Statement which returns more than one row.

The syntax for creating an explicit cursor is
 CURSOR cursor_name IS select_statement;

Working with an explicit cursor involves four steps:
· Declaring the cursor for initializing in the memory
· Opening the cursor for allocating memory
· Fetching the cursor for retrieving data
· Closing the cursor to release allocated memory

[bookmark: _Toc250091690]The PROCEDURE Section
The PROCEDURE section is the only mandatory part of a PL/SQL block. This part of the block calls variables and uses cursors to manipulate data in the database. The PROCEDURE section is the main part of a block, containing conditional statements and SQL commands.

BEGIN...END

In a block, the BEGIN statement denotes the beginning of a procedure. Similarly, the END statement marks the end of a procedure. The following example shows the basic structure of the PROCEDURE section:

SYNTAX:

BEGIN
open a cursor;
condition1;
statement1;
condition2;
statement2;
condition3;
statement3;
.
.
close the cursor;
END
[bookmark: _Toc250091691]Output Statements
[bookmark: _Toc250091692]Displaying Output to the User
Particularly when handling exceptions, you may want to display output to keep users informed about what is taking place. You can display output to convey information, and you can display your own customized error messages, which will probably make more sense to the user than an error number. Perhaps you want the user to contact the database administrator if an error occurs during processing, rather than to see the exact message.
PL/SQL does not provide a direct method for displaying output as a part of its syntax, but it does allow you to call a package that serves this function from within the block. The package is called DBMS_OUTPUT.

EXCEPTION
 WHEN zero_divide THEN
 DBMS_OUTPUT.put_line('ERROR: DIVISOR IS ZERO. SEE YOUR DBA.');

ANALYSIS:
ZERO_DIVIDE is an Oracle predefined exception. Most of the common errors that occur during program processing will be predefined as exceptions and are raised implicitly (which means that you don't have to raise the error in the PROCEDURE section of the block).If this exception is encountered during block processing, the user will see:

INPUT:

SQL> @block1
ERROR: DIVISOR IS ZERO. SEE YOUR DBA.
PL/SQL procedure successfully completed.

Doesn't that message look friendly than:

INPUT/OUTPUT:
SQL> @block1
begin
*
ERROR at line 1:
ORA-01476: divisor is equal to zero
ORA-06512: at line 20

[bookmark: _Toc250091693]Control Statements
[bookmark: _Toc250091694]Cursor Control Commands
Now that you have learned how to define cursors in a PL/SQL block, you need to know how to access the defined cursors. This section explains the basic cursor control commands: DECLARE, OPEN, FETCH, and CLOSE.
[bookmark: _Toc250091695]DECLARE
Earlier today you learned how to define a cursor in the DECLARE section of a block. The DECLARE statement belongs in the list of cursor control commands.

[bookmark: _Toc250091696]OPEN
Now that you have defined your cursor, how do you use it? You cannot use this book unless you open it. Likewise, you cannot use a cursor until you have opened it with the OPEN command. For example:
SYNTAX:

BEGIN
open employee_cursor;
statement1;
statement2;
.
.
.
END
[bookmark: _Toc250091697]FETCH
FETCH populates a variable with values from a cursor. Here are two examples using FETCH: One populates an aggregate variable, and the other populates individual variables.

INPUT:
DECLARE
 cursor employee_cursor is
 select emp_id, emp_name from employees;
 employee_record employee_cursor%ROWTYPE;
BEGIN
 open employee_cursor;
 loop
 fetch employee_cursor into employee_record;
 end loop;
 close employee_cursor;
END

ANALYSIS:
The preceding example fetches the current row of the cursor into the aggregate variable employee_record. It uses a loop to scroll the cursor. Of course, the block is not actually accomplishing anything.

DECLARE
 cursor employee_cursor is
 select emp_id, emp_name from employees;
 id_num employees.emp_id%TYPE;
 name employees.emp_name%TYPE;
BEGIN
 open employee_cursor;
 loop
 fetch employee_cursor into id_num, name;
 end loop;
 close employee_cursor;
END

ANALYSIS:
This example fetches the current row of the cursor into the variables id_num and name, which was defined in the DECLARE section.
[bookmark: _Toc250091698]CLOSE
When you have finished using a cursor in a block, you should close the cursor, as you normally close a book when you have finished reading it. The command you use is CLOSE.

SYNTAX:
BEGIN
 open employee_cursor;
 statement1;
 statement2;
 .
 .
 close employee_cursor;
END

ANALYSIS:
After a cursor is closed, the result set of the query no longer exists. You must reopen the cursor to access the associated set of data.
[bookmark: _Toc250091699]Transactional Control commands in PL/SQL
The transactional control commands allow the programmer to control when transactions are actually written to the database, how often, and when they should be undone. They are COMMIT, ROLLBACK, and SAVEPOINT.

[bookmark: _Toc250091700]COMMIT
[bookmark: _Toc250091701]ROLLBACK
[bookmark: _Toc250091702]SAVEPOINT

SYNTAX:

BEGIN
 DECLARE
 ...
 BEGIN
 statements...
 IF condition THEN
 COMMIT;
 ELSE
 ROLLBACK;
 END IF;
 ...
 EXCEPTION
 ...
 END;
END;
[bookmark: _Toc250091703]Statements Control Commands
[bookmark: _Toc67785701][bookmark: _Toc250091704]Conditional Statements
Now we are getting to the good stuff--the conditional statements that give you control over how your SQL statements are processed. The conditional statements in PL/SQL resemble those in most third-generation languages.
[bookmark: _Toc250091705]IF...THEN
The IF...THEN statement is probably the most familiar conditional statement to most programmers. The IF...THEN statement dictates the performance of certain actions if certain conditions are met. The structure of an IF...THEN statement is as follows:

SYNTAX:
IF condition1 THEN
 statement1;
END IF;

If you are checking for two conditions, you can write your statement as follows:
SYNTAX:

IF condition1 THEN
 statement1;
ELSE
 statement2;
END IF;

If you are checking for more than two conditions, you can write your statement as follows:

SYNTAX:
IF condition1 THEN
 statement1;
ELSIF condition2 THEN
 statement2;
ELSE
 statement3;
END IF;

ANALYSIS:
The final example states: If condition1 is met, then perform statement1; if condition2 is met, then perform statement2; otherwise, perform statement3. IF...THEN statements may also be nested within other statements and/or loops.
[bookmark: _Toc250091706]LOOPS
Loops in a PL/SQL block allow statements in the block to be processed continuously for as long as the specified condition exists. There are three types of loops. LOOP is an infinite loop, most often used to scroll a cursor. To terminate this type of loop, you must specify when to exit. For example, in scrolling a cursor you would exit the loop after the last row in a cursor has been processed:

INPUT:

BEGIN
 open employee_cursor;
 LOOP
 FETCH employee_cursor into employee_record;
 EXIT WHEN employee_cursor%NOTFOUND;
 statement1;
 .
 .
 .
 END LOOP;
 close employee_cursor;
END;

%NOTFOUND is a cursor attribute that identifies when no more data is found in the cursor. The preceding example exits the loop when no more data is found. If you omit this statement from the loop, then the loop will continue forever.

WHILE-LOOP
The WHILE-LOOP executes commands while a specified condition is TRUE. When the condition is no longer true, the loop returns control to the next statement.

INPUT:

DECLARE
 cursor payment_cursor is
 select cust_id, payment, total_due from payment_table;
 cust_id payment_table.cust_id%TYPE;
 payment payment_table.payment%TYPE;
 total_due payment_table.total_due%TYPE;
BEGIN
 open payment_cursor;
 WHILE payment < total_due LOOP
 FETCH payment_cursor into cust_id, payment, total_due;
 EXIT WHEN payment_cursor%NOTFOUND;
 insert into underpay_table values (cust_id, 'STILL OWES');
 END LOOP;
 close payment_cursor;
END;

ANALYSIS:
The preceding example uses the WHILE-LOOP to scroll the cursor and to execute the commands within the loop as long as the condition payment < total_due is met.

FOR-LOOP
You can use the FOR-LOOP in the previous block to implicitly fetch the current row of the cursor into the defined variables.

INPUT:

DECLARE
 cursor payment_cursor is
 select cust_id, payment, total_due from payment_table;
 cust_id payment_table.cust_id%TYPE;
 payment payment_table.payment%TYPE;
 total_due payment_table.total_due%TYPE;
BEGIN
 open payment_cursor;
 FOR pay_rec IN payment_cursor LOOP
 IF pay_rec.payment < pay_rec.total_due THEN
 insert into underpay_table values (pay_rec.cust_id, 'STILL OWES');
 END IF;
 END LOOP;
 close payment_cursor;
END;

ANALYSIS:
This example uses the FOR-LOOP to scroll the cursor. The FOR-LOOP is performing an implicit FETCH, which is omitted this time. Also, notice that the %NOTFOUND attribute has been omitted. This attribute is implied with the FOR-LOOP; therefore, this and the previous example yield the same basic results.
[bookmark: _Toc250091707]The EXCEPTION Section
The EXCEPTION section is an optional part of any PL/SQL block. If this section is omitted and errors are encountered, the block will be terminated. Some errors that are encountered may not justify the immediate termination of a block, so the EXCEPTION section can be used to handle specified errors or user-defined exceptions in an orderly manner. Exceptions can be user-defined, although many exceptions are predefined by Oracle.
[bookmark: _Toc250091708]Raising Exceptions
Exceptions are raised in a block by using the command RAISE. Exceptions can be raised explicitly by the programmer, whereas internal database errors are automatically, or implicitly, raised by the database server.

SYNTAX:

BEGIN
 DECLARE
 exception_name EXCEPTION;
 BEGIN
 IF condition THEN
 RAISE exception_name;
 END IF;
 EXCEPTION
 WHEN exception_name THEN
 statement;
 END;
END;

ANALYSIS:
This block shows the fundamentals of explicitly raising an exception. First exception_name is declared using the EXCEPTION statement. In the PROCEDURE section, the exception is raised using RAISE if a given condition is met. The RAISE then references the EXCEPTION section of the block, where the appropriate action is taken.
[bookmark: _Toc250091709]Handling Exceptions
The preceding example handled an exception in the EXCEPTION section of the block. Errors are easily handled in PL/SQL, and by using exceptions, the PL/SQL block can continue to run with errors or terminate gracefully.

SYNTAX:

EXCEPTION
 WHEN exception1 THEN
 statement1;
 WHEN exception2 THEN
 statement2;
 WHEN OTHERS THEN
 statement3;

ANALYSIS:
This example shows how the EXCEPTION section might look if you have more than one exception. This example expects two exceptions (exception1 and exception2) when running this block. WHEN OTHERS tells statement3 to execute if any other exceptions occur while the block is being processed. WHEN OTHERS gives you control over any errors that may occur within the block.
[bookmark: _Toc250091710]Procedures
A subprogram is a program unit/module that performs a particular task. These subprograms are combined to form larger programs. This is basically called the 'Modular design'. A subprogram can be invoked by another subprogram or program which is called the calling program.
A subprogram can be created:
· At schema level
· Inside a package
· Inside a PL/SQL block

A schema level subprogram is a standalone subprogram. It is created with the CREATE PROCEDURE or CREATE FUNCTION statement. It is stored in the database and can be deleted with the DROP PROCEDURE or DROP FUNCTION statement.
[bookmark: _Toc250091711]Parameter types and passing technics
We can pass input values to a procedure or function as a parameter. Parameters can be of three types
i. Input Parameters
ii. Output Parameters and
iii. InOut Parameters.
A subprogram created inside a package is a packaged subprogram. It is stored in the database and can be deleted only when the package is deleted with the DROP PACKAGE statement. We will discuss packages in the chapter 'PL/SQL - Packages'.

PL/SQL subprograms are named PL/SQL blocks that can be invoked with a set of parameters. PL/SQL provides two kinds of subprograms:

· Functions: these subprograms return a single value, mainly used to compute and return a value.
· Procedures: these subprograms do not return a value directly, mainly used to perform an action.
[bookmark: _Toc250091712]IN only parameter:
An IN parameter lets you pass a value to the subprogram. It is a read-only parameter. Inside the subprogram, an IN parameter acts like a constant. It cannot be assigned a value. You can pass a constant, literal, initialized variable, or expression as an IN parameter. You can also initialize it to a default value; however, in that case, it is omitted from the subprogram call. It is the default mode of parameter passing. Parameters are passed by reference.
[bookmark: _Toc250091713]OUT only parameter
An OUT parameter returns a value to the calling program. Inside the subprogram, an OUT parameter acts like a variable. You can change its value and reference the value after assigning it. The actual parameter must be variable and it is passed by value.
[bookmark: _Toc250091714]IN OUT Parameter
An IN OUT parameter passes an initial value to a subprogram and returns an updated value to the caller. It can be assigned a value and its value can be read. The actual parameter corresponding to an IN OUT formal parameter must be a variable, not a constant or an expression. Formal parameter
IN & OUT Mode Example 1
This program finds the minimum of two values, here procedure takes two numbers using IN mode and returns their minimum using OUT parameters.
CREATE OR REPLACE PROCEDURE findMin(x IN number, y IN number, z OUT number) IS

DECLARE
a number;
b number;
c number;
BEGIN
IF x < y THEN
z:= x;
ELSE
z:= y;
END IF;
END;

BEGIN
a:= 23;
b:= 45;
findMin(a, b, c);
dbms_output.put_line(' Minimum of (23, 45) : ' || c);
END;
/

When the above code is executed
Minimum of (23, 45): 23
PL/SQL procedure successfully completed.
IN & OUT Mode Example 2
This procedure computes the square of value of a passed value. This example shows how we can use same parameter to accept a value and then return another result.

CREATE PROCEDURE squareNum(x IN OUT number) IS
DECLARE
a number;
BEGIN
x := x * x;
END;
BEGIN
a:= 23;
squareNum(a);
dbms_output.put_line(' Square of (23): ' || a);
END;
/
When the above code is executed at SQL prompt, it produces the following result:

Square of (23): 529
PL/SQL procedure successfully completed.

When the above code is executed at SQL prompt, it produces the following result:
Square of (23): 529
PL/SQL procedure successfully completed.
[bookmark: _Toc250091715]Methods for Passing Parameters
Actual parameters could be passed in three ways:
· Positional notation
· Named notation
· Mixed notation

[bookmark: _Toc250091716]POSITIONAL NOTATION
In positional notation, you can call the procedure as:

findMin(a, b, c, d);

In positional notation, the first actual parameter is substituted for the first formal parameter; the second actual parameter is substituted for the second formal parameter, and so on. So, a is substituted for x, b is substituted for y, c is substituted for z and d is substituted for m.
[bookmark: _Toc250091717]NAMED NOTATION
In named notation, the actual parameter is associated with the formal parameter using the arrow symbol (=>). So the procedure call would look like:

findMin(x=>a, y=>b, z=>c, m=>d);
[bookmark: _Toc250091718]MIXED NOTATION
In mixed notation, you can mix both notations in procedure call; however, the positional notation should precede the named notation. The following call is legal:

findMin(a, b, c, m=>d);

But this is not legal:

findMin(x=>a, b, c, d);

[bookmark: _Toc250091719]Creating a Procedure
A procedure is created with the CREATE OR REPLACE PROCEDURE statement. The simplified syntax for the CREATE OR REPLACE PROCEDURE statement is as follows:

CREATE [OR REPLACE] PROCEDURE procedure_name
[(parameter_name [IN | OUT | IN OUT] type [, ...])]
{IS | AS}
BEGIN
< procedure_body >
END procedure_name;

Where,
· procedure-name specifies the name of the procedure.
· [OR REPLACE] option allows modifying an existing procedure.
· The optional parameter list contains name, mode and types of the parameters. IN represents that value will be passed from outside and OUT represents that this parameter will be used to return a value outside of the procedure.
· procedure-body contains the executable part.
 The AS keyword is used instead of the IS keyword for creating a standalone procedure.

Example:

The following example creates a simple procedure that displays the string 'Hello World!' on the screen when executed.

CREATE OR REPLACE PROCEDURE greetings
AS
BEGIN
dbms_output.put_line('Hello World!');
END;
/
When above code is executed using SQL prompt, it will produce the following result:
Procedure created.
[bookmark: _Toc250091720]Deleting a Standalone Procedure
A standalone procedure is deleted with the DROP PROCEDURE statement. Syntax for deleting a procedure is:

DROP PROCEDURE procedure-name;

So you can drop greetings procedure by using the following statement:

BEGIN
DROP PROCEDURE greetings;
END;
/
Parameter Modes In PL/SQL Subprograms
[bookmark: _Toc250091721]Functions
A PL/SQL function is same as a procedure except that it returns a value. Therefore, all the discussions of the previous chapter are true for functions too.
[bookmark: _Toc250091722]Library Functions

	S.No.
	Function
	Purpose

	1
	ASCII(x)
	 Returns the ASCII value of the character x.

	2
	CHR(x)
	 Returns the character with the ASCII value of x.

	3
	CONCAT(x, y)
	 Concatenates the strings x and y and return the appended string.

	4
	INITCAP(x)
	 Converts the initial letter of each word in x to uppercase and returns that string.

	5
	INSTR(x, find_string [, start] [, occurrence])
	 Searches for find_string in x and returns the position at which it occurs.

	6
	INSTRB(x)
	 Returns the location of a string within another string, but returns the value in bytes.

	7
	LENGTH(x)
	 Returns the number of characters in x.

	8
	LENGTHB(x)
	 Returns the length of a character string in bytes for single byte character set.

	9
	LOWER(x)
	 Converts the letters in x to lowercase and returns that string.

	10
	LPAD(x, width [, pad_string])
	 Pads x with spaces to left, to bring the total length of the string up to width characters.

	11
	LTRIM(x [, trim_string])
	 Trims characters from the left of x.

	12
	NANVL(x, value)
	 Returns value if x matches the NaN special value (not a number), otherwise x is returned.

	13
	NLS_INITCAP(x)
	 Same as the INITCAP function except that it can use a different sort method as specified by NLSSORT.

	14
	NLS_LOWER(x)
	 Same as the LOWER function except that it can use a different sort method as specified by NLSSORT.

	15
	NLS_UPPER(x)
	 Same as the UPPER function except that it can use a different sort method as specified by NLSSORT.

	16
	NLSSORT(x)
	 Changes the method of sorting the characters. Must be specified before any NLS function, otherwise, the default sort will be used.

	17
	NVL(x, value)
	 Returns value if x is null, otherwise, x is returned.

	18
	NVL2(x, value1, value2)
	 Returns value1 if x is not null, if x is null, value2 is returned.

	19
	REPLACE(x, search_string, replace_string)
	 Searches x for search_string and replaces it with replace_string.

	20
	RPAD(x, width [, pad_string])
	 Pads x to the right.

	21
	RTRIM(x [, trim_string])
	 Trims x from the right.

	22
	SOUNDEX(x)
	 Returns a string containing the phonetic representation of x.

	23
	SUBSTR(x, start [, length])
	 Returns a substring of x that begins at the position specified by start. An optional length for the substring may be supplied.

	24
	SUBSTRB(x)
	 Same as SUBSTR except the parameters are expressed in bytes instead of characters for the single-byte character systems.

	25
	TRIM([trim_char FROM) x)
	 Trims characters from the left and right of x.

	26
	UPPER(x)
	 Converts the letters in x to uppercase and returns that string.

	27
	EXISTS(n)
	 otherwise returns FALSE.

	28
	COUNT Returns the number of elements that a collection currently contains.
	Returns TRUE if the nth element in a collection exists

	29
	LIMIT
	 Checks the Maximum Size of a Collection.

	30
	FIRST
	Returns the first (smallest) index numbers in a collection that uses integer subscripts.

	31
	LAST
	Returns the last (largest) index numbers in a collection that uses integer subscripts.

	32
	PRIOR(n)
	 Returns the index number that precedes index n in a collection.

	33
	NEXT(n)
	Returns the index number that succeeds index n.

	34
	EXTEND
	Appends one null element to a collection.

	35
	EXTEND(n)
	 Appends n null elements to a collection.

	36
	EXTEND(n,i)
	Appends n copies of the ith element to a collection.

	37
	TRIM
	Removes one element from the end of a collection.

	38
	TRIM(n)
	 Removes n elements from the end of a collection.

	39
	DELETE
	Removes all elements from a collection, setting COUNT to 0.

	40
	DELETE(n)
	Removes the nth element from an associative array with a numeric key or a nested table. If the associative array has a string key, the element corresponding to the key value is deleted. If n is null, DELETE(n) does nothing.

	41
	DELETE(m,n)
	Removes all elements in the range m..n from an associative array or nested table. If m is larger than n or if m or n is null, DELETE(m,n) does nothing.

	42
	ADD_MONTHS(x, y)
	 Adds y months to x.

	43
	LAST_DAY(x)
	 Returns the last day of the month.

	44
	MONTHS_BETWEEN(x, y)
	 Returns the number of months between x and y.

	45
	NEXT_DAY(x, day)
	 Returns the datetime of the next day after x.

	46
	NEW_TIME
	 Returns the time/day value from a time zone specified by the user.

	47
	ROUND(x [, unit])
	 Rounds x

	48
	SYSDATE()
	 Returns the current datetime.

	49
	TRUNC(x [, unit])
	 Truncates x.

	50
	CURRENT_TIMESTAMP()
	 Returns a TIMESTAMP WITH TIME ZONE containing the current session time along with the session time zone.

	51
	EXTRACT({ YEAR | MONTH | DAY | HOUR | MINUTE | SECOND } | { TIMEZONE_HOUR | TIMEZONE_MINUTE } | { TIMEZONE_REGION | } TIMEZONE_ABBR) FROM x)
	 Extracts and returns a year, month, day, hour, minute, second, or time zone from x

	52
	FROM_TZ(x, time_zone)
	 Converts the TIMESTAMP x and time zone specified by time_zone to a TIMESTAMP WITH TIMEZONE.

	53
	LOCALTIMESTAMP()
	 Returns a TIMESTAMP containing the local time in the session time zone.

	54
	SYSTIMESTAMP()
	 Returns a TIMESTAMP WITH TIME ZONE containing the current database time along with the database time zone.

	55
	SYS_EXTRACT_UTC(x)
	 Converts the TIMESTAMP WITH TIMEZONE x to a TIMESTAMP containing the date and time in UTC.

	56
	TO_TIMESTAMP(x, [format])
	 Converts the string x to a TIMESTAMP.

	57
	TO_TIMESTAMP_TZ(x, [format])
	 Converts the string x to a TIMESTAMP WITH TIMEZONE.

	58
	NUMTOYMINTERVAL(x, interval_unit)
	 Converts the number x to an INTERVAL YEAR TO MONTH.

	59
	TO_DSINTERVAL(x)
	 Converts the string x to an INTERVAL DAY TO SECOND.

	60
	TO_YMINTERVAL(x)
	 Converts the string x to an INTERVAL YEAR TO MONTH.

	61
	NUMTODSINTERVAL(x, interval_unit)
	 Converts the number x to an INTERVAL DAY TO SECOND.

[bookmark: _Toc250091723]Stored Functions (User Defined)
[bookmark: _Toc250091724]Creating a Function
A standalone function is created using the CREATE FUNCTION statement. The simplified syntax for the CREATE OR REPLACE PROCEDURE statement is as follows:

CREATE [OR REPLACE] FUNCTION function_name
 [(parameter_name [IN | OUT | IN OUT] type [, ...])]
 RETURN return_datatype
{IS | AS}
BEGIN
 < function_body >
END [function_name];

Where,
· function-name specifies the name of the function.
· [OR REPLACE] option allows modifying an existing function.
· The optional parameter list contains name, mode and types of the parameters. IN represents that value will be passed from outside and OUT represents that this parameter will be used to return a value outside of the procedure.
· The function must contain a return statement.
· RETURN clause specifies that data type you are going to return from the function.
· function-body contains the executable part.
· The AS keyword is used instead of the IS keyword for creating a standalone function.
Example
The following example illustrates creating and calling a standalone function. This function returns the total number of CUSTOMERS in the customers table. We will use the CUSTOMERS table, which we had created in PL/SQL Variables chapter:

Select * from customers;
+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
+----+----------+-----+-----------+----------+

CREATE OR REPLACE FUNCTION totalCustomers
 RETURN number IS
 total number(2) := 0;
BEGIN
 SELECT count(*) into total FROM customers;
 RETURN total;
END;
/
When above code is executed using SQL prompt, it will produce the following result:
Function created.
[bookmark: _Toc250091725]Calling a Function
While creating a function, you give a definition of what the function has to do. To use a function, you will have to call that function to perform the defined task. When a program calls a function, program control is transferred to the called function.

A called function performs defined task and when its return statement is executed or when it last end statement is reached, it returns program control back to the main program.

To call a function you simply need to pass the required parameters along with function name and if function returns a value then you can store returned value. Following program calls the function totalCustomers from an anonymous block:

DECLARE
 c number(2);
BEGIN
 c := totalCustomers();
 dbms_output.put_line('Total no. of Customers: ' || c);
END;
/
Total no. of Customers: 6
PL/SQL procedure successfully completed.
Example:
The following is one more example which demonstrates Declaring, Defining, and Invoking a Simple PL/SQL Function that computes and returns the maximum of two values.

DECLARE
 a number;
 b number;
 c number;
FUNCTION findMax(x IN number, y IN number)
 RETURN number IS
 z number;
BEGIN
 IF x > y THEN
 z:= x;
 ELSE
 Z:= y;
 END IF;
 RETURN z;
END;
BEGIN
 a:= 23;
 b:= 45;
 c := findMax(a, b);
 dbms_output.put_line(' Maximum of (23,45): ' || c);
END;
/

When the above code is executed at SQL prompt, it produces the following result:

Maximum of (23,45): 78
PL/SQL procedure successfully completed.
[bookmark: _Toc250091726]PL/SQL Recursive Functions
We have seen that a program or subprogram may call another subprogram. When a subprogram calls itself, it is referred to as a recursive call and the process is known as recursion.
To illustrate the concept, let us calculate the factorial of a number. Factorial of a number n is defined as:
 n! = n*(n-1)!
 = n*(n-1)*(n-2)!
 ...
 = n*(n-1)*(n-2)*(n-3)... 1

DECLARE
 num number;
 factorial number;
FUNCTION fact(x number)
 RETURN number
 IS
 f number;
 BEGIN
 IF x=0 THEN
 f := 1;
 ELSE
 f := x * fact(x-1);
 END IF;
 RETURN f;
 END;
 BEGIN
 num:= 6;
 factorial := fact(num);
 dbms_output.put_line(' Factorial '|| num || ' is ' || factorial);
 END;
 /
When the above code is executed at SQL prompt, it produces the following result:
[bookmark: _Toc250091727]Factorial 6 is 720

[bookmark: _Toc250091728]Triggers

Triggers are stored programs, which are automatically executed or fired when some events occur. Triggers are, in fact, written to be executed in response to any of the following events:
· A database manipulation (DML) statement (DELETE, INSERT, or UPDATE).
· A database definition (DDL) statement (CREATE, ALTER, or DROP).
· A database operation (SERVERERROR, LOGON, LOGOFF, STARTUP, or SHUTDOWN).

Triggers could be defined on the table, view, schema, or database with which the event is associated.
Benefits of Triggers.
Triggers can be written for the following purposes:
· Generating some derived column values automatically
· Enforcing referential integrity
· Event logging and storing information on table access
· Auditing
· Synchronous replication of tables
· Imposing security authorizations
[bookmark: _Toc250091729]Creating Triggers
The syntax for creating a trigger is:
CREATE [OR REPLACE] TRIGGER trigger_name
{BEFORE | AFTER | INSTEAD OF }
{INSERT [OR] | UPDATE [OR] | DELETE}
[OF col_name]
ON table_name
[REFERENCING OLD AS o NEW AS n]
[FOR EACH ROW]
WHEN (condition)
DECLARE
Declaration-statements
BEGIN
Executable-statements
EXCEPTION
Exception-handling-statements
END;

Where,
· CREATE [OR REPLACE] TRIGGER trigger_name: Creates or replaces an existing trigger with the trigger_name.
· {BEFORE | AFTER | INSTEAD OF}: This specifies when the trigger would be executed. The INSTEAD OF clause is used for creating trigger on a view.
· {INSERT [OR] | UPDATE [OR] | DELETE}: This specifies the DML operation.
· [OF col_name]: This specifies the column name that would be updated.
· [ON table_name]: This specifies the name of the table associated with the trigger.
· [REFERENCING OLD AS o NEW AS n]: This allows you to refer new and old values for various DML statements, like INSERT, UPDATE, and DELETE.
· [FOR EACH ROW]: This specifies a row level trigger, i.e., the trigger would be executed for each row being affected. Otherwise the trigger will execute just once when the SQL statement is executed, which is called a table level trigger.
· WHEN (condition): This provides a condition for rows for which the trigger would fire. This clause is valid only for row level triggers.
Example:
To start with, we will be using the CUSTOMERS table we had created and used in the previous chapters:

Select * from customers;
+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
+----+----------+-----+-----------+----------+

The following program creates a row level trigger for the customers table that would fire for INSERT or UPDATE or DELETE operations performed on the CUSTOMERS table. This trigger will display the salary difference between the old values and new values:

CREATE OR REPLACE TRIGGER display_salary_changes
BEFORE DELETE OR INSERT OR UPDATE ON customers
FOR EACH ROW
WHEN (NEW.ID > 0)
DECLARE
sal_diff number;
BEGIN
sal_diff := :NEW.salary - :OLD.salary;
dbms_output.put_line('Old salary: ' || :OLD.salary);
dbms_output.put_line('New salary: ' || :NEW.salary);
dbms_output.put_line('Salary difference: ' || sal_diff);
END;
/
Trigger created.

· OLD and NEW references are not available for table level triggers, rather you can use them for record level triggers.
· If you want to query the table in the same trigger, then you should use the AFTER keyword, because triggers can query the table or change it again only after the initial changes are applied and the table is back in a consistent state.
· Above trigger has been written in such a way that it will fire before any DELETE or INSERT or UPDATE operation on the table, but you can write your trigger on a single or multiple operations, for example BEFORE DELETE, which will fire whenever a record will be deleted using DELETE operation on the table.
[bookmark: _Toc250091730]Triggering a Trigger
Let us perform some DML operations on the CUSTOMERS table. Here is one INSERT statement, which will create a new record in the table:

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY) VALUES (7, 'Kriti', 22, 'HP', 7500.00);

When a record is created in CUSTOMERS table, above create trigger display_salary_changes will be fired and it will display the following result:

Old salary:
New salary: 7500
Salary difference:

Now, let us perform one more DML operation on the CUSTOMERS table. Here is one UPDATE statement, which will update an existing record in the table:

UPDATE customers
SET salary = salary + 500
WHERE id = 2;

When a record is updated in CUSTOMERS table, above create trigger display_salary_changes will be fired and it will display the following result:

Old salary: 1500
New salary: 2000
Salary difference: 500
[bookmark: _Toc250091731]Packages
What is a Package?
A package is a schema object that groups logically related PL/SQL types, variables, constants, subprograms, cursors, and exceptions. A package is compiled and stored in the database, where many applications can share its contents.
A package always has a specification, which declares the public items that can be referenced from outside the package.
If the public items include cursors or subprograms, then the package must also have a body. The body must define queries for public cursors and code for public subprograms. The body can also declare and define private items that cannot be referenced from outside the package, but are necessary for the internal workings of the package. Finally, the body can have an initialization part, whose statements initialize variables and do other one-time setup steps, and an exception-handling part. You can change the body without changing the specification or the references to the public items; therefore, you can think of the package body as a black box.
In either the package specification or package body, you can map a package subprogram to an external Java or C subprogram by using a call specification, which maps the external subprogram name, parameter types, and return type to their SQL counterparts.
The AUTHID clause of the package specification determines whether the subprograms and cursors in the package run with the privileges of their definer (the default) or invoker, and whether their unqualified references to schema objects are resolved in the schema of the definer or invoker.
The ACCESSIBLE BY clause of the package specification lets you specify a white list of PL/SQL units that can access the package. You use this clause in situations like these:
· You implement a PL/SQL application as several packages—one package that provides the application programming interface (API) and helper packages to do the work. You want clients to have access to the API, but not to the helper packages. Therefore, you omit the ACCESSIBLE BY clause from the API package specification and include it in each helper package specification, where you specify that only the API package can access the helper package.
· You create a utility package to provide services to some, but not all, PL/SQL units in the same schema. To restrict use of the package to the intended units, you list them in the ACCESSIBLE BY clause in the package specification.
[bookmark: _Toc250091732]Reasons to Use Packages
Packages support the development and maintenance of reliable, reusable code with the following features:
· Modularity
Packages let you encapsulate logically related types, variables, constants, subprograms, cursors, and exceptions in named PL/SQL modules. You can make each package easy to understand, and make the interfaces between packages simple, clear, and well defined. This practice aids application development.
· Easier Application Design
When designing an application, all you need initially is the interface information in the package specifications. You can code and compile specifications without their bodies. Next, you can compile standalone subprograms that reference the packages. You need not fully define the package bodies until you are ready to complete the application.
· Hidden Implementation Details
Packages let you share your interface information in the package specification, and hide the implementation details in the package body. Hiding the implementation details in the body has these advantages:
· You can change the implementation details without affecting the application interface.
· Application users cannot develop code that depends on implementation details that you might want to change.

· Added Functionality
Package public variables and cursors can persist for the life of a session. They can be shared by all subprograms that run in the environment. They let you maintain data across transactions without storing it in the database. (For the situations in which package public variables and cursors do not persist for the life of a session, see "Package State".)
· Better Performance
The first time you invoke a package subprogram, Oracle Database loads the whole package into memory. Subsequent invocations of other subprograms in same the package require no disk I/O.

Packages prevent cascading dependencies and unnecessary recompiling. For example, if you change the body of a package function, Oracle Database does not recompile other subprograms that invoke the function, because these subprograms depend only on the parameters and return value that are declared in the specification.
· Easier to Grant Roles
You can grant roles on the package, instead of granting roles on each object in the package.
[bookmark: _Toc250091733]Package Specification
A package specification declares public items. The scope of a public item is the schema of the package. A public item is visible everywhere in the schema. To reference a public item that is in scope but not visible, qualify it with the package name. Each public item declaration has all information needed to use the item. For example, suppose that a package specification declares the function factorial this way:
FUNCTION factorial (n INTEGER) RETURN INTEGER; -- returns n!
The declaration shows that factorial needs one argument of type INTEGER and returns a value of type INTEGER, which is invokers must know to invoke factorial. Invokers need not know how factorial is implemented (for example, whether it is iterative or recursive).
Appropriate Public Items
Appropriate public items are:
· Types, variables, constants, subprograms, cursors, and exceptions used by multiple subprograms
A type defined in a package specification is either a PL/SQL user-defined subtype
· Associative array types of standalone subprogram parameters
You cannot declare an associative array type at schema level. Therefore, to pass an associative array variable as a parameter to a standalone subprogram, you must declare the type of that variable in a package specification. Doing so makes the type available to both the invoked subprogram (which declares a formal parameter of that type) and to the invoking subprogram or anonymous block.
· Variables that must remain available between subprogram invocations in the same session
· Subprograms that read and write public variables ("get" and "set" subprograms)
Provide these subprograms to discourage package users from reading and writing public variables directly.
· Subprograms that invoke each other
You need not worry about compilation order for package subprograms, as you must for standalone subprograms that invoke each other.
· Overloaded subprograms
Overloaded subprograms are variations of the same subprogram. That is, they have the same name but different formal parameters. For more information about them, see "Overloaded Subprograms".

[bookmark: _Toc250091734]Creating Package Specifications
To create a package specification, use the "CREATE PACKAGE Statement". Because the package specifications do not declare cursors or subprograms, the packages trans_data and aa_pkg do not need bodies.

Example 10-1 Simple Package Specification
In this example, the specification for the package trans_data declares two public types and three public variables.
CREATE OR REPLACE PACKAGE trans_data AUTHID DEFINER AS
 TYPE TimeRec IS RECORD (
 minutes SMALLINT,
 hours SMALLINT);
 TYPE TransRec IS RECORD (
 category VARCHAR2(10),
 account INT,
 amount REAL,
 time_of TimeRec);
 minimum_balance CONSTANT REAL := 10.00;
 number_processed INT;
 insufficient_funds EXCEPTION;
 PRAGMA EXCEPTION_INIT(insufficient_funds, -4097);
END trans_data;
/
Example 10-2 Passing Associative Array to Standalone Subprogram
In this example, the specification for the package aa_pkg declares an associative array type, aa_type. Then, the standalone procedure print_aa declares a formal parameter of type aa_type. Next, the anonymous block declares a variable of type aa_type, populates it, and passes it to the procedure print_aa, which prints it.
CREATE OR REPLACE PACKAGE aa_pkg AUTHID DEFINER IS
 TYPE aa_type IS TABLE OF INTEGER INDEX BY VARCHAR2(15);
END;
/
CREATE OR REPLACE PROCEDURE print_aa (
 aa aa_pkg.aa_type
) AUTHID DEFINER IS
 i VARCHAR2(15);
BEGIN
 i := aa.FIRST;

 WHILE i IS NOT NULL LOOP
 DBMS_OUTPUT.PUT_LINE (aa(i) || ' ' || i);
 i := aa.NEXT(i);
 END LOOP;
END;
/
DECLARE
 aa_var aa_pkg.aa_type;
BEGIN
 aa_var('zero') := 0;
 aa_var('one') := 1;
 aa_var('two') := 2;
 print_aa(aa_var);
END;
/
Result:
1 one
2 two
0 zero
[bookmark: _Toc250091735]Package Body
If a package specification declares cursors or subprograms, then a package body is required; otherwise, it is optional. The package body and package specification must be in the same schema.
Every cursor or subprogram declaration in the package specification must have a corresponding definition in the package body. The headings of corresponding subprogram declarations and definitions must match word for word, except for white space.
To create a package body, use the "CREATE PACKAGE BODY Statement".
The headings of the corresponding subprogram declaration and definition do not match word for word; therefore, PL/SQL raises an exception, even though employees.hire_date%TYPE is DATE.
The cursors and subprograms declared in the package specification and defined in the package body are public items that can be referenced from outside the package. The package body can also declare and define private items that cannot be referenced from outside the package, but are necessary for the internal workings of the package.
Finally, the body can have an initialization part, whose statements initialize public variables and do other one-time setup steps. The initialization part runs only the first time the package is referenced. The initialization part can include an exception handler.
You can change the package body without changing the specification or the references to the public items.
Example 10-3 Matching Package Specification and Body
CREATE PACKAGE emp_bonus AS
 PROCEDURE calc_bonus (date_hired employees.hire_date%TYPE);
END emp_bonus;
/
CREATE PACKAGE BODY emp_bonus AS
 -- DATE does not match employees.hire_date%TYPE
 PROCEDURE calc_bonus (date_hired DATE) IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE
 ('Employees hired on ' || date_hired || ' get bonus.');
 END;
END emp_bonus;
/
Result:
Warning: Package Body created with compilation errors.
Show errors (in SQL*Plus):
SHOW ERRORS
Result:
Errors for PACKAGE BODY EMP_BONUS:
LINE/COL ERROR
-------- ---
2/13 PLS-00323: subprogram or cursor 'CALC_BONUS' is declared in a
 			
package specification and must be defined in the package body
Correct problem:
CREATE OR REPLACE PACKAGE BODY emp_bonus AS
 PROCEDURE calc_bonus
 (date_hired employees.hire_date%TYPE) IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE
 ('Employees hired on ' || date_hired || ' get bonus.');
 END;
END emp_bonus;
/
Result:
Package body created.
[bookmark: _Toc250091736]Package Instantiation and Initialization
When a session references a package item, Oracle Database instantiates the package for that session. Every session that references a package has its own instantiation of that package.
When Oracle Database instantiates a package, it initializes it. Initialization includes whichever of the following are applicable:
· Assigning initial values to public constants
· Assigning initial values to public variables whose declarations specify them
· Executing the initialization part of the package body
Package State
The values of the variables, constants, and cursors that a package declares (in either its specification or body) comprise its package state.
If a PL/SQL package declares at least one variable, constant, or cursor, then the package is stateful; otherwise, it is stateless.
Each session that references a package item has its own instantiation of that package. If the package is state ful, the instantiation includes its state.
The package state persists for the life of a session, except in these situations:
· The package is SERIALLY_REUSABLE.
· The package body is recompiled.
If the body of an instantiated, stateful package is recompiled (either explicitly, with the "ALTER PACKAGE Statement", or implicitly), the next invocation of a subprogram in the package causes Oracle Database to discard the existing package state and raise the exception ORA-04068.
After PL/SQL raises the exception, a reference to the package causes Oracle Database to re-instantiate the package, which re-initializes it. Therefore, previous changes to the package state are lost.
· Any of the session's instantiated packages are invalidated and revalidated.
All of a session's package instantiations (including package states) can be lost if any of the session's instantiated packages are invalidated and revalidated.
Oracle Database treats a package as stateless if its state is constant for the life of a session (or longer). This is the case for a package whose items are all compile-time constants.
A compile-time constant is a constant whose value the PL/SQL compiler can determine at compilation time. A constant whose initial value is a literal is always a compile-time constant. A constant whose initial value is not a literal, but which the optimizer reduces to a literal, is also a compile-time constant. Whether the PL/SQL optimizer can reduce a nonliteral expression to a literal depends on optimization level. Therefore, a package that is stateless when compiled at one optimization level might be stateful when compiled at a different optimization level.
[bookmark: _Toc250091737]SERIALLY_REUSABLE Packages

SERIALLY_REUSABLE packages let you design applications that manage memory better for scalability.
If a package is not SERIALLY_REUSABLE, its package state is stored in the user global area (UGA) for each user. Therefore, the amount of UGA memory needed increases linearly with the number of users, limiting scalability. The package state can persist for the life of a session, locking UGA memory until the session ends. In some applications, such as Oracle Office, a typical session lasts several days.
[bookmark: _Toc250090416][bookmark: _Toc250091569][bookmark: _Toc250091653]If a package is SERIALLY_REUSABLE, its package state is stored in a work area in a small pool in the system global area (SGA). The package state persists only for the life of a server call. After the server call, the work area returns to the pool. If a subsequent server call references the package, then Oracle Database reuses an instantiation from the pool. Reusing an instantiation re-initializes it; therefore, changes made to the package state in previous server calls are invisible.
